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Abstract. Finite (polynomial) solutions of Laplace’s equation are investigated. The
unifying features of this study are the so-called Niven equations which yield the dimension
of the space of such solutions. In carrying out this study complete sets of solutions
are obtained on the n-dimensional sphere in terms of ellipsoidal coordinates. This
corresponds o an inlegrable system having all the integrals of motion given by quadratic
orbits of the universal enveloping algebra of O(n +1). We call this system the n-
dimensional Euler top. The spectrum of the integrals of motion has been recently
computed for n = 3 by Komarov and Kuznetsov using results originally due to Niven,
These calculations are extended to arbitrary dimension.

1. Introduction

The Euler top on the O(4) Lie algebra (or Manakov top) has been recently studied
by Komarov and Kuznetsov [1]. It is one of the six integrable systems on the O(4)
Lie algebra that have integrals of motion that lie on quadratic orbits of the univer-
sal enveloping algebra [2]. Having observed the construction of conical harmonics
as originally expounded by Niven [3] and summarized in the books of Hobson [4],
and Whittaker and Watson [5], Komarov and Kuznetsov [1] showed that an analo-
gous analysis can be performed for the Euler top on O(4). In addition this work
demonstrated that the eigenvalues of the quadratic first integrals can be calculated
as algebraic expressions in terms of the zeros of the solutions and the parameters
occurring in the defining elliptical coordinates. Komarov and Kuznetsov have also
indicated how these results are equivalent to the two-site su(2) Gaudin magnet and
the four-site Gaudin magnet [6]. The problem of separation of variables on the real
n-dimensional sphere has been solved by Kalnins and Miller [7, 8]. The general solu-
tion consists of nested ellipsoidal coordinates and can be described by a diagramatic
calculus which extends that originally developed by Vilenkin [9]. In this article we
demonstrate that the methods of Niven can be extended to general separable coordi-
nates on the n-dimensional sphere. In addition we give formulae for the eigenvalues
in terms of the zeros of the corresponding polynomials. We show also that it is
possible to analyse polynomial solutions of Laplace’s equation for Euclidean space in
a similar way. We introduce the generalized cyclidic finite solutions from which all
other solutions can be obtained. Some examples of degenerate solutions are given,
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5664 E G Kalunins and W Miller Jr
2. Separation of variables on S,

Let us recall the relevant details of the complete classification of separable coordi-
nates on S,. On the n-sphere the generic separable coordinates are the ellipsoidal
coordinates z*, ¢ = 1,...,n. With natural coordinates s;,, ¢ = 1,...,n + 1 such
that 1! s = 1, the coordinates , s; corresponding to z* are given by

2 _ H?:l(m‘ - e])

83 i=1,...,n41 2.1
(e —ej) )

ey ™
where

e, <l <<zt < - <e, <a" <eyy,

and the subscript e can be taken as an abbreviation for the set {e;,ey,... €41}
This ellipsoidal coordinate system is denoted by the box symbol

[31)’32) v "en-f—l) . (2.2)
The infinitesmal distance is

1 H'#'(xi_mj)
dsz = -ZZ H"i‘""l

- daf)?.
i=1 1(w1_ek)( )

Laplace’s equation AY = —o(a + n —1)¥ for the eigenfunctions on the n-sphere
has, in these coordinates, the form

n

4 [\/ﬁ o (JR-aW)]:_J(a_*_n_l)\p 2.3)

i1 HJ;E,(:!:EF.’L'J) ‘lﬁ i%

where R; = II}})(af — e;). The separation equations have the form

¥

=1
4\/5;5% [\/ﬁ B‘If.-] + [a(a +n-1)(zH)" + ’S:; A,-(a:")"-i]\p,. =0 (2.4)

where W = II%, ¥.(z%).

We adopt the convention A, = a{o + n —1). The separation constants A;
are eigenvalues of commuting second-order symmetric operators in the enveloping
algebra of so(n) generated by

IL.=8——8s;— i,7=1,...,n+1.

Specifically these operators are

1;223;{11’%. i=kL...,n 2.3)
i>]



Integrability and the Niven equations 5665

where ..S‘;',-f = (1/pY)ii,. ipp &, ---€;,) and the summation extends over
z'],..:,zp # ¢,5 and i, # i, for r # s. The eigenfunctions satisfy the eigenvalue
equations

=5V J=1,...,n. (2.6)
The general construction of coordinates proceeds by embedding ellipsoidal coordi-

nates within ellipsoidal coordinates. This is represented diagramatically by a tree-like
graph made out of components of the form

leileslesl - | enps)
bl l 2.7)
Sm Sm Spy SP»+1
where S, denotes coordinates on a sphere of dimension p;, p; = 0,1,2,.... The

arrows mdu:ate that the coordinates attached to each e; come from Sp For the
graph above considered as a single entity, a suitable chmce of coordinates would
typically look like

Sp+1 = (e51)(151)

fp 4z = (e51)(152)
SP 4pitl = (esl)(]‘sm-lul)

2.8)
SPu41 = (csn+l )(n+131)

P+ = (eSn41)(np152)

sPn+1'+Pn+l+1 = (33“.}.1 )(’ﬂ--l-l Srn-n-l-l)

-where P, = 0, F; = E’-'l(p_, + 1) and 73 (,s,.)? = 1. (This coordinate
system would be separable for the Laplace Beltrami engenvalue equation in Sy
where N = F, 2 ) By applying these rules to tree graphs where blocks of ellipsoidal
coordinates are joined by directed arrows that point in the direction of the branches,
all separable coordinate systems on S, are recovered.

To see how the calculations of Niven work in n dimensions let us first look at the
case of generic ellipsoidal coordinates. If we seek solutions of Laplace’s equation of
the form

n+1 82
‘I’(Si) = (ijzl csa,')n?i] (Z u_e_pe ) (2.9)

p=1 r
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with0 k< n+1,1<a; <n+1, a; # o if j # k we will be successful provided
the u; sausfy the Nwen equations

N[el,...,en_i_];eal,...,eak;ul,...,uM]
n+1 1

E;(u_e) Z(u—e Z(u_u =0 (2.10)

r#s

and 2M + k = o. These equations can be obtained by direct substitution of the
ansatz into Laplace’s equation. Also, as computed in each of the solutions, ¥;(z*)
can be written in the form

\I"i(wi) = '\f l-[:-:le (mi - ea_,-)nf-!_-l(a"i - ur)' (2'11)

Note that the polynomial solutions W{s;) vanish on the ellipsoidal coordinate hyper-
surfaces x! = u._

How are the engenvalues Ap i =2,...,n 1o be computed? They can be by direct
substitution into the separation equations. If this is done then the eigenvalues can be
determined from the formula

N k
Xy ooy .\_‘Tp‘rnrg. AT 1 3, ]f-. . PEVE I |
2 AiUmgpion+ D) INT+ N1 - gi= gjl+ 3(i 4+ 5 — 1)(35 - 249)]
=1 i=0 j=0
XV By jUntivjon1 =0 (2.12)
where
r
I’]P = }T I'ai.l Hi—i{r@"' ui) !p"‘ﬁ = l' Z Uy Uy, Y -1)F
= = 1 N 7
P I. pJ Iyt
_1[aY 1 i
V;_F a_p J l(p a,)lp =0 =;T Z ea,-‘ecr.-,"'ea,-j(_l)

18 . 1
E, = Pl [B_] | Bl T €4,) |p=0 = P Z €4,€4," "€a,(~1)7
AvrvAgE

and {e,} = {e;} — {eq, 1
The polynomial elgenfunctlons obtained in this way form a complete set. Indeed
if we consider the Cartesian coordinates z* = » s,, t=1,...,n 4 1, then for given

intamar ~ cnlutinne ~AF M 1M Fran ha e arl Innlrina far galiitinneg AF T anlana’s
l.ulEEC-l o SOIULICHS OL \L IU} Vall UG UULdlll\uU Uy IUUl\lllb 107 SCIuGons o1 Lapiave o

equation AP = 0 where ¢ = P,(z',...,z"*"} is a homogeneous polynomial of
degree o in the variables z*. In particular the space of all polynomials in the variables
z' can be decomposed into subspaces of polynomials of which a typical ¢lement is

(052, 2%9) Py ((21)% ., (2FH)7).

If we choose the new variables u; = (z')° then the polynomial P(uy,..., %, ;)
satisfies the equation

n+l )
a
E (4u, o + 2 )

i=1

Pr(uy,ooiyuy ) =0. (2.13)
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There ate Ciyt™ = (n + M)!/n!M! possible homogeneous polynomials of de-
gree Py(uy,...,u,,;) and equation (2.13) imposes at most Cht¥=! condi-
tions on them. Therefore, the number N(n, M) of so]utlons is such that

N(n,M) > CitM —cptM-1 = c"¥M-1" 1In fact the equality sign holds
true. Indeed it is not difficult 1o see that (2.13) cannot admit solutions of the
form (u, + ---+ u,,“)kp(ul,...,unH) for p a polynomial when k& = 1,2,....

The dimension of the space of all such polynomials is CLF* !,  Therefore
ChtM _ C¥M=~1 5 N{n,M). Hence the equality holds. This is exactly the
number of independent solutions of the Niven equations. In fact for each choice of

integers p,, p,,...,p, such thaty . p, = M there are solutions u;,, = 1,...,n;
r=1,...,p, for which
€ Uy < KUy, K&Kty <0 K tlyy, <& <o Ty, <€y

(2.14)

There are exactly CL‘*M =1 such solutions. This follows from a straightforward gen-
eralization of a theorem due to Stieltjes [5]. Indeed, consider the function

@ = [, (I (73w — eg|®)| T, (T, ey, — wjp))

where the «, are positive and half integral and the variables wu,; are in the ranges
given by the inequalities (2.14). This product is zero when some of the u;; are on the
boundary of the domain (2.14). When the variables are unequal to each other and
alsotoe;,i=1,...,n+1 then & is positive and is a continuous bounded function
of the variables. Hence there is a set of interior values for which ¢ attains its upper
bound. This set satisfies the critical point conditions

o
log® =0 Vi, j.
B’H.'J' & »J

These restrictions are just the generalized Niven conditions,

n+1

Z (U;J‘ —e +>:Z (H.L =0

‘1 it] k#p

If the variables are complex then finite solutions can be constructed in this way but
the completeness property is no Jonger valid.

For a graph of the type (2.7) analogous calculations can be made. Let us look
for solutions of the form W = i, whete ¥ = N, 9;(='), and @ = M} o (S p; )
Each of the ; functions is chosen to satisfy the individual Laplace equation (2.3)
for n = p;. The Laplace equation

AY = —-g(o+n-1)¥

then becomes

Z[az +P=‘_fi__1‘_=iIL='_'."J_’L:2 $=0 (2.15)

932 | 8; O, (s:)?
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where s; = ,s;,i=1,...,n4+1,

If we try a solution of the form

n+1 32
= (HJ =le a,)n (Z W _‘Pe ) (Hn+1(es ))
p=1 "} r
then the generalized form of the Niven equations is
P n+l ¢4
2 (2n,+p,+1
2.7 5+ s 5=0 @16
= Uu; — Gaj. g=1 (Hi - Eq) r#i (

where o = p+2M + 3/ %' n; and ,s,.,j =1,...,k correspond to boxes in the
diagram for which p,. = 0 and, consequently, 0 < p < k. These equations provide
a complete solution for the problem of separation of variables on the n-sphere. In
analogy with the proof for ellipsoidal coordinates described by the graph (2.2), the
space of all polynomial solutions of (2.15) is spanned by polynomials of the form

7 (2™ (IR ()" Py (212, (2"F)7)

With variables u; = (z*)? as before, the polynomials Py (u,,...,u,,,) satisfy

™ 8?2 ] 8
E (4ui3_lﬁ+2(2ni+ p;+ 1)5:) + 24311 PM("I""!un-l-l) = 0.
£=1 ] 1 J (\’J
We can argue as before that there are only C3;F™~! possible solutions and this is
exactly the number of solutions of the Niven equations.

The operators that describe the separation can be obtained from those given for
generic coordinates as follows. If we choose the generic coordinates on the sphere
of dimension N = Y71 p; 4 n then the operators are obtained by taking the first
p, + 1 of the e;5 equal then the mext p, + 1 of the e;s equal and so on in the
expressions given above for the operators that describe the generic coordinates.

3. Separation of variables on E

The results we have developed for the sphere S|, can be readily adapted to Euclidean

n-space. Specifically the extension of the work on 5 applies to finding solutions of

I.aplaoes equatlon AV =0 in E,. If we choose Cartesian coordinates defined by
,i=1,...,n then ellipsoidal coordinates y* are given by

&2 mp., (v ~ ej)

iy =
(%) Hj;éi(es' = 6‘;‘)

j=1,...,n G.1)

where e, < y' < e, < y* < - < ¢, < y". This coordinate system is denoted by
the box symbol

(CAEAEERI L B
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The infinitesmal distance is given by
—-—czzﬂ: s#ilY )(1y’-)2-
4 o e (v —ep)

Laplace’s equation A¥ = 0 in E,, expressed in terms of the y*, has the form

= Z-:’ 0y —y’)@gf [\/Q_gj'] 0 G2
where @; = I, (3 — ¢;). The separation equations are

n-1

Vg [VES] + X x0H v =0 63
i=1

where ¥ = II%_, W,(3*). The separation constants A ; are eigenvalues of commuting
second-order symmetric operators in the enveloping algebra of the Euclidean group
E(n), generated by the Lie derivatives

| ] . . .
Iij=z'5-;-215j ,j=1,...,n 1> 7
and
Is)
5 T heom

Specifically these operators are
o L .
=3 "SI+ P (3.4)
i>j =1

where the S}/ are defined as in the case of $,,and S| = (1/AD Ty, iz €, eipe
The separable solutions satisfy the eigenvalue equations

W= 0. (.5)

The analogue of the coordinates given by (2.7) for S, is represented diagramati-
cally by a graph of the form

felezlesl - le,]
11 l 3.6)
S SPQSPS Pn

where P, denates coordinates on a sphere of dimension p; and p; = 0,1,2,.
The arrows indicate that the coordinates artached to each ¢; come from 6‘ The
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graph, given a suitable choice of coordinates, would typically look as follows.

2Pt = (") sy)

Pt = (ezl)(132)
ghirtl = (ezl)(lsp1+1)
3.7

an-H = (ezn)(nsl)

[+ ) . R N
TnTe o (ezu)(nsz)

e

Patpatl ....( ﬂ)(n p,.+1+1)

where P, = 0, P, = Y521(p; +1) and 1744 (4s,,)? = 1. By applying these rules
to graphs of the form (‘4 6) we recover a class of separable coordinates of Laplace’s
equation. If we seek solutions W(z‘) of Laplace’s equation of the form

V(z') =0, 2* 04 (Zn: '))2 ) (3.8)

where 0 < k € n, 1 S a; € n,and o # o if § # k, we will be successful provided
the u; satnsfy the Niven equations (2. 16)

In terms of ellipsoidal coordinates, the solutions W, (3’ ') can be written in the

form
U (y') = A (v — eo YL (0 — 1),

The eigenvalues X;, i = 2,...,n — 1 can be computed in exactly the same way as
for the sphere (2. 2) ie. via the [ormulae (2.12). Let us now choose a graph and look
for solutions of the form ¥ = ¢ where ¥ = II7., ¥;(y") and ¢ = 185 (8 pJ)

Each of tha ¢ ‘f’J functions is chncen to cnhqfu the individual T:\nl’u‘ 'mnn {7 F‘“ on

S,,- Laplace’s equation in Euclidean spacc then becomes

92 a __n,-(ni+p1-—1)] =
Ay = Z[a, e e (3.9)

where 2 = 2, i=1,...,n.
If we try a solution of the form

n P 2
¥ = 02,20, (Z e —1) O, (3.10)

p=1 'U." —_ ep
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then the generalized Niven equations have the form
Nlepseo s eni€nneresCayitlyy ..ty =0.

These equations provide a solution for coordinate systems of the type described by
the box diagram (3.6). The corresponding operators that describe the separation can
be obtained by taking the first p, + 1 of the e;s equal, then the next p,+ 1 e;s equal,
and 50 on.

Ellipsoidal coordinates are not the only ones that are basic to the construction of
separable systems in E. Parabolic coordinates are also basic [7, 8]. The question
that we ask is whether can we extend the construction of Niven and if so what will it
mean. In fact, it is possible to generate polynomial solutions in parabolic coordinates.
To see this we recall that parabolic coordinates y* can be taken as

2= le(y oyt e — e, ) (311

H?"_'l(yi - ej——l)

() = =
Bipii(e; — ;)

1=2,...,m

where y! < e, <y? <ey < ---<e,_; < y" and the z/ are Cartesian coordinates
in E,. This coordinate system is denoted by the box symbol

{eileslegl - le, s} (3.12)
The infinitesmal distance is given by
? A Oy =yl .
ds? = _g Z—-—-—-if'l("i‘ v) (dy*)2.
4 i=1 2 (v — &)
Laplace’s equation in E,, expresscd in parabolic coordinates, has the form (3.2)

with Q; = 17" (v/ — ¢;). Using the expression

2. (20)? o7 (1 —1f
Qu) = Z—-——( ) : +2czl - ctu= cz————’"l(u V)

=
jo2 E 6 IS (v~ e;)

we seek solutions ¥(z¢) of the form
W(zt) =Nk, 20 Q) (3.13)

where 2 ¢ kS n-1,2 <€ a; < n—1, a; # ap. The u; must satisfy the
corresponding Niven equations:

Nlep, o€y 1580 00010, Upsevnstipg] = 0.

It is clearly possible to generalize this result to the case of coordinate systems corre-
sponding to the diagram

{eleslegl - le, 1}
L l (3.14)
SPl SP: SPJ I SPn-l
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4, Finite solutions in cyclidic coordinates

In the previous section we have seen how the Niven ansatz has been able to give
polynomial solutions of Laplace’s equation AW = 0. The question we answer in
this section is whether analogous solutions exist for the case of cyclidic coordinates.
Cyclidic coordinates are the generic orthogonal coordinates for which Laplace's equa-
tion admits a solution via the R separation ansatz [10]. After reviewing the basic
properties of cyclidic coordinates we answer this question in the affirmative.

A natural way for the realization of cychdlc coordinates is in terms of pro;ectwe
coordinates w?, j =1,...,n + 2, given in terms of Cartesian coordinates z* by

wh =2:%p k=1,...,n

[ n \
whtl = jp? kZ(z")Z’ + 1) (4.1)
k=1

that satisfy Z:"“( )2 =0,
The surface defined by

n+2 N2
> s =0 “2)
i=1 v 3

where ¢; < e, < e3 < -+ < €,,4, I8 a cyclide in n dimensions, Coordinates

y=vy5, k=1,...,nsuchthate, < y' < e, <y < - < y" < ¢, are just
the orthogonal cyclidic coordinates in n dimensions. This coordinate system is known
to provide an R separation of variables for Laplace’s equation. Indeed any function

¥(21,...,2") can be expressed in terms of the projective coordinates by observing
that

auis e

k
ko —u o
== jwnt! 4 wni? k=1,...,n.

If ¥(z!,...,2™) is a solution of Laplace’s equation then

~ 9% 52w i
A e T CTr Eh

Therefore if the general pro;ectlve coordinates u/, j = 1,...,n+2 are related to the
coordinates y*, k = 1,...,n in such a way that Zj"“(w—")2 = 0 then the solution

Af T Al nle Alution of S+2 a2m 180w = Tha nunctin
UI. mpla\.«ca ‘-liudLlUl.l D CIIBU a DUluLlUll UL LJJ-I Lo f \ws gy - U Ill\.r \.il.l\.oal.lu

=

we now address is whether finite type solutions can be found in these coordinates?
To consider this possibility, take coordinates

n+l _
(wiyt = yrirgl= L =) Ly <)

i=1,...,n+2 4.3
Mzeler—e;) 3
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that satisfy (4.2) for y = y* and y™*2 = E;‘:f(wi )2, When y"*? = 0 then (4.3)
and (4.2) can be solved to give

) nt2 nti -
(w3)2=—(28k(wk)2)g—-£—fg—) i=1l,...,n42.
k=1

j;f.i(ﬁ. j)

These expressions can be obtained by limiting the process y™1? — 0 in such a way
that y"+2y"+ — (012 e, (w*)?). If we look for solutions of the form

‘ % - &2 (wr)?
(w’) = (I} w )0}, z 4.4

w; — e
then the corresponding Niven equations
Nle, o vepiai€asers€q ity stigg] =0

hold. These solutions are homogeneous polynomials of degree 2M + k = o. If,
indeed, we take the limit specified above, then the limiting solutions of Laplace’s
equation are

n+42 af2 n+2 (w )2
¥ (w') = (Z ek(u’k)z) nf:lu’QjHM (Z u; — € ) ) (4.5)

k=1

In order to obtain the explicit form of these solutions we can, without loss of
generality, let the parameter e, ,, — co. The resulting coordinates have the form

n+‘.l
. Hly' ~e .
(w’)2=(w"+2)2~—'————' 1y ~e;) i=1,..,n+1,
Mjpile; —e;)

and the corresponding solutions of Laplace’s equation are

n+tl ( p)2
U(z') = (o™ I} v Y (Z — )
p=1

where v/ = wi/p?, i=1,...,n+2

The general solutions of finite type can be obtained from the expression (4.4) by
using the known limiting procedures outlined in [11]. The various possible coordinate
types can then be characterized by the elementary divisors of the two quadratic forms.
One example of these types is given in the following section.

5. Separation of variables in complex spaces

The results developed for E, and S5, can bc extended to the case of complexified
spaces of constant curvature. We illustrate this for the case of 5, c. Basically, what
occurs in this case is the possibility that some of the parameters e; are equal. The
procedure for dealing with all these possibilities has been given in [11] Here, we give
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an example of how this works in the simplest case in which two of the parameters e;
are equal. Much of what we have done before transfers itself directly to the complex
case from the real case. For a metric of the form (2.2) with e, = e,, a suitable choice
of coordinates {2'} on S, . is

(81 —isy)? = _—H,—=1(a: =)

Mzi(e; —ey)
8 N, (xf —e,)
(s +sH) = __=1______1_ S.1
1 34 ”“(eJ e]) ( )
n?—n(zi —€;)
= = k=3,4,...,n+1.
, ((‘31 - ek)znj;él,k(ej —e)
These coordinates correspond to a graph of the form
[elies]---leni] (5.2)
in the notation of [11].
The separation equations are the same as in (2.4) but with R, = (2% -
e,)*M} 15 (z* — e;). Solutions can be sought in the form
() =M s, MM, (L2 —isy)” + e % 5.3)
: =1 =1 (1 — ;)2 (u me]) (u; —€;) e;) "

where 0 < kgn—-1,3 € a;

i $n+ 1, o; #F o It follows from the equality

(s, — isz) + 53 % N2, (e —x')
(u-—e )

(u—e)? (u—el) (u— ey )QH"H(u—ej)

that the analogue of the Niven equations is

nt1 1 1
1 1 1 _
Zs i, (2 —e) Z:(u - +TZ#(ui—u,_)_0'

J'

As stated above this process can be repeated and applied to any combination of
coordinate systems for which some of the e;s are equal. We should also mention
here that similar results apply to coordinate systems in £ ¢
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