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Abstmel Finite (polynomial) salutions of hplace's equation are investigated. n e  
uni@ing features of this study are the so-called Niven equations which yield the dimension 
of the space of such solulions. In canying out this sludy complete sets of solulions 
are oblained on the n-dimensional sphere in terms of ellipsoidal coordinates. l l i s  
corresponds 10 an inlephle syslem having a!! !!E in!qra!r of molion given by quadratic 
orbits of the universal enveloping algebra of O(n + 1). We call this system the n- 
dimensional Euler top. ?he spectmm of the integrals of motion has k e n  recently 
computed for n = 3 by Komamv and Kuznetsov using results originally due to Niven. 
nest CaIculalions are extended to arbitrary dimension. 

1. Introduction 

The Euler top on the O(4) Lie algebra (or Manakov top) has been recently studied 
by Komarov and Kuznetsov [l]. It is one of the six integrable systems on the O(4) 
Lie algebra that have integrals of motion that lie on quadratic orbits of the univer- 
sal enveloping - .  algebra 121. Having observed the construction of conical harmonics 
as originaily expounded-by Niven-[3] and summarized in the books of Hobson [4], 
and Whittaker and Watson [SI, Komarov and Kuznetsov [l] showed that an analo- 
gous analysis can be performed for the Euler top on O(4). In addition this work 
demonstrated that the eigenvalues of the quadratic first integrals can be calculated 
as algebraic expressions in terms of the zeros of the solutions and the parameters 
occurring in the defining elliptical coordinates. Komarov and Kuznetsov have also 
indicated how these results are equivalent to the two-site su(2) Gaudin magnet and 
the four-site Gaudin magnet [6]. The problem of separation of variables on the real 
ndimensional sphere has been solved by Kalnins and Miller [7, 81. The general solu- 
tion consists of nested ellipsoidal coordinates and can be described by a diagramatic 
calculus which extends that originally developed by Vilenkin 191. In this article we 
demonstrate that the methods of Niven can be extended to general separable coordi- 
nates on the ndimensionai sphere. in addition we give formuiae for the eigenvalues 
in terms of the zeros of the corresponding polynomials. We show also that it is 
possible to analyse polynomial solutions of Laplace's equation for Euclidean space in 
a similar way. We introduce the generalized cyclidic finite solutions from which all 
other solutions can be obtained. Some examples of degenerate solutions are given. 
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2. Separation of variables on S,, 

Let us recall the relevant details of the complete classification of separable coordi- 
nates on S,. On the n-sphere the generic separable coordinates are the ellipsoidal 
coordinates x;, i = 1,. . . , n. With natural coordinates s. i = 1,. . . , n + 1 such !' 
that ry2: s: = 1, the coordinates esj corresponding to I' are given by 
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where 

el < x1 < e2 < x2 < ... < e ,  < I" < e,,+] 

and the subscript e can be taken as an abbreviation for the set {el ,  e,, . . . , e,,+l). 
This ellipsoidal coordinate system is denoted by the box symbol 

[etIe,I.'.Ien+,l * (2.2) 

The infinitesmal distance is 

Laplace's equation A@ = -o(a + n - l )@ for the eigenfunctions on the n-sphere 
has, in these coordinates, the form 

where Ri = I'I;i;(l("' - e j ) .  The separation equations have the form 

where @ = I ' I ~ = , @ i ( x i ) .  
We adopt the convention Xi  = n(n + 71 - 1). The separation constants Xj  

are eigenvalues of commuting second-order symmetric operators in the enveloping 
algebra of ~ ( n )  generated by 

Specifically these operators are 

1; = Sy:,l;i j = 1,. . . ,11 

i > j  
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where S! = ( l/p!)[xi3i2,.,i,+ e i ,  . . . eip] and the summation extends over 
i,, . . . , ip # i , j  and i, # i s  for T # s. The eigenfunctions satisfy the eigenvalue 
equations 

l T @ = A j @  j = 1 ,  ..., n. (2.6) 

The general construction of coordinates proceeds by embedding ellipsoidal coordi- 
nates within ellipsoidal coordinates. This is represented diagramatically by a tree-like 
graph made out of components of the form 

where S p ,  denotes coordinates on a sphere of dimension pi, p i  = 0 , 1 , 2 , .  . .. The 
arrow indicate that the coordinates attached to each ei come from S p i .  For the 
graph above considered as a single entity, a suitable choice of coordinates would 
typically look like 

SP,tl = ( e s l ) ( l s l )  

s ~ , t 2  = ( A ) ( I S Z )  

... 
- 

S p n + l t p n + l t l  - ( e s n + l ) ( n t l s p m + , t 1 )  

where PI = 0, pi = x;.z:(pj + 1) and C ~ : ~ ~ ( I . s , ) 2  = 1. (Thk wordinate 
system would be separable for the Laplace Beltrami eigenvalue equation in S ,  
where N = Pnt2.) By applying these rules to tree graphs where blocks of ellipsoidal 
coordinates are joined by directed arrows that point in the direction of the branches, 
all separable coordinate systems on S, are recovered. 

?b see how the calculations of Niven work in TL dimensions let us first look at the 
case of generic ellipsoidal coordinates. If we seek solutions of Laplace's equation of 
the form 
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with 0 < k < n + l , l  < aj < n + l , a j  # ok i f j  # kwe  will besuccessful provided 
the uj satisfy the Niven equations 

N[el,.  . . , entl i em,, . . . , 
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i ul,. . . , i t M ]  

and 2M + k = U. These equations can be obtained by direct substitution of the 
ansatz into Liplace's equation. Also, as computed in each of the solutions, q i ( z i )  
can be written in the form 

(2.11) 

Note that the polynomial solutions * ( s i )  vanish on the ellipsoidal coordinate hyper- 
surfaces I' = ur. 

How are the eigenvalues X i ,  i = 2 , .  . . , n to be computed? They can be by direct 
substitution into the separation equations. If this is done then the eigenvalues can be 
determined from the formula 

P \  
N b P  

;=I i=O j = O  

p p rp + r+ii - ii - z j j  + +(i + j - i j ( 3 j  - 2ij j  "ii;m+i-N t t t [ 

and { e A }  = { e i }  - {e, , } .  
The polynomial eigenfunctions obtained in this way form a complete set. Indeed 

if we consider the Cartesian coordinates I' = ?'si, i = 1 , .  . . , n + I, then for given 

equation A@ = 0 where @ = P, ( z ' , .  . . , z " + ~ )  is a homOgeneOuS polynomial of 
degree U in the variables z i .  In particular the space of all polynomials in the variables 
zi can be decomposed into subspaces of polynomials of which a typical element is 

L.;egei %pccGfis of (2,Iq be GvLainei fGr sG!u~Gns bp!ace's 

( rIj,lImj)PM(( z1)2 , .  . . , ( I " + 1 ) 2 ) .  

if we choose the new variables 11; = ( 2 j 2  then the poiynomiai P ( z t I , .  . . ,71,,+3 j 
satisfies the equation 
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There are Cht" = (n  + M ) ! / n ! M !  possible homogeneous polynomials of de- 
gree Pnr(ul. ..., untl) and equation (2.13) imposes at most Chty-' condi- 
tions on them. Therefore, the number N ( n , M )  of solutions is such that 
N ( n , M )  2 Ch'" - c;+-y-1 = cntM-1 M , In fact the equality sign holds 
true. Indeed it is not difficult to see that (2.13) cannot admit solutions of the 
form (ul +... + u,,+l)kp(ul ,..., for p a polynomial when k = 1,'L ,.... 
The dimension of the space of all such polynomials is Cht-y-'. Therefore 
CM M-l  N ( n , M ) .  Hence the equality holds. This is exactly the 
number of independent solutions of the Niven equations. In fact for each choice of 
integers p,, p,, . . . , p,, such thatx;,, pi = M there are solutions ?ti-, i = 1,. . . , n: 
r = 1,. . . , p, for which 

el < i h i l  < ... < ulp, < ez < uzl < . . .  < T L ? , ' ~  < e3 < . . .  < unP, < e , + , .  

n+M - C n + M - l  

(214) 

There are exactly CGtM-' such solutions. This Collows from a straightfonvard gen- 
eralization of a theorem due to Stieltjes 151. Indeed, consider the function 

where the li are positive and half integral and the variables uij are in the ranges 
given by the inequalities (2.14). This product is zero when some of the tc i j  are on the 
boundary of the domain (2.14). When the variables are unequal to each other and 
also to e;, i = 1,. . . , n + 1 then '3 is positive and n a continuous bounded function 
of the variables. Hence there is a set of interior values for which (1) attains its upper 
hound. This set satisfies the critical point conditions 

? 

These restrictions are just the generalized Niven conditions, 

If the variables are complex then finite solutions a n  be constructed in this way but 
the completeness property is no longer valid. 

For a graph of the type (2.7) analogous calculations can he made. Let us look 
for solutions of the form rlr = @y, where @ = Ilr=i$i(zi), and 'p = ny$;'pj(Spj). 
Each of the 'pj functions is chosen to satisfy the individual Laplace equation (2.3) 
for n = pj. The Laplace equation 

A Q = - u ( a + n - l ) r l r  

then becomes 

(2.15) 
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where si = e ~ i ,  i = 1,. . . , n  + I. 
If we by a solution of the form 
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then the generalized form of the Niven equations is 

where d = p + 2M + n i  and e ~ Q j , j  = 1,. . . , k correspond to boxes in the 
diagram for which p Q j  = 0 and, consequently, 0 < p < k.. These equations provide 
a complete solution for the problem of separation of mriables on the n-sphere. In 
analogy with the proof for ellipsoidal coordinates described by the graph (2.2), the 
space of all polynomial solutions of (2.15) is spanned by polynomials of the form 

q1 ( e 2"' )( ny2; ( 2 ) " s )  PM (( & ) 2 ,  . . . , ( Z " + 1 ) 2 )  

With variables ui = (z')~ as before, the polynomials PM(zr , , .  . . , u n t l )  satisfy 

We can argue as before that there are only C;+'-l possible solutions and this is 
exactly the number of solutions of the Niven equations. 

The operators that describe the separation can he obtained from those given for 
generic coordinates as follows. If we choose the generic coordinates on the sphere 
of dimension N = p i  + n then the operators are obtained by taking the first 
p, + 1 of the eis equal then the next p 2  + 1 of the eis equal and so on in the 
expressions given above for the operators that describe the generic coordinates. 

3. Separation of variables on E,, 

The results we have developed for the sphere S,, can be readily adapted to Euclidean 
napace. Specifically the extension of the work on .S,, applies to finding solutions of 
Laplace's equation A Q  = 0 in E,,. If we choose Cartesian coordinates defined by 
z i ,  i = 1,. . . , n then ellipsoidal coordinates v i  are given by 

(3.1) 

where el < y1 < e2 < ~2 < . . . < e,, < y". This coordinate system is denoted by 
the box symbol 

[ h l e 2 1  ...Ie,ll. 
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The infinitesmal distance is given by 

Laplace's equation A* = 0 in E,, expressed in terms of the yi, has the form 

where Qj = n?='=,(yJ - e ; ) .  The separation equations are 

5669 

(3.3) 

where q = Il~=.=,*,(y ') .  The separation constants X j  are eigenvalues of commuting 
second-order symmetric operators in the enveloping algebra of the Euclidean group 
E(n), generated by the Lie derivatives 

and 

a P . = -  j=1, ..., n. 
8zJ  

Specifically these operators are 

(3.4) 

where the SF are defined as in the case Of S,, and S i  = ( l / k ! )  ci, ,,,,, ;&# ei, . . . ei,.  
The separable solutions satisfy the eigenvalue equations 

I:* = A'Q.  (3.5) 

The analogue of the coordinates given by (2.7) for S,, is represented diagramati- 
a l l y  by a graph of the form 

(3.6) 

where Pp, denotes coordinates on a sphere of dimension pi and pi = 0 , 1 , 2 , .  . .. 
The arrows indicate that the coordinates attached to each e( come from .Sa:. _. The 
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graph, given a suitable choice of coordinates, would typically look as follows. 

zPItl = (ez l ) ( ls l )  

( e z 1 ) ( 1 S 2 )  
zPlt2 = 

... 

(3.7) 

. . .  

(ez")("Sp.+3tl) 
,P.+P,tl = 

where PI = 0, Pi = Cj,:(pj + 1) and ~ ~ : ~ ~ ( b ~ , ) 2  = 1. By applying these rules 
to graphs of the form (3.6) we recover a class of separahle coordinates of Laplace's 
equation. If we seek solutions P(zi)  of Laplace's equation of the form 

where 0 < k 4 11, I < a j  < n, and a j  # ak if j # k, we will be successful provided 
the uj satisfy the Niven equations (2.16). 

In terms of ellipsoidal coordinates, the solutions Pi(yi) a n  be written in the 
form 

The eigenvalues X i ,  i = 2 , .  . . , n - 1 a n  be computed in exactly the same way as 
for the sphere (2.2), Le. via the formulae (2.12). Let us now choose a graph and look 
for solutions of the form rY = $ip where v5 = II:tl$i(yi) and 1p = n;==,ip(S,,). 

S,,. Laplace's equation in Euclidean space then becomes 
3 c h  of :he q ,  I;;:.&nns. chosen '2 &$fy thp i.".&vid..! r.lp!ece q o a t b n  (2,q J 

where z' = $, i = I , .  . . , n. 
If we try a solution of the form 

(3.9) 

(3.10) 
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then the generalized Niven equations have the form 

N[e, ,..., e , ; e  -,,..., eQb;u1 ,..., uM]  = O .  

These equations provide a solution for coordinate systems of the type described by 
the box diagram (3.6). The corresponding operators that describe the separation can 
be obtained by taking the first p1 + 1 of the e;s equal, then the next p ,  + 1 eis equal, 
and so on. 

Ellipsoidal coordinates are not the only ones that are basic to the construction of 
separable systems in E,,. Parabolic coordinates are also basic [7, 81. The question 
that we ask is whether can we extend the construction of Niven and if so what will it 
mean. In fact, it is possible to generate polynomial solutions in parabolic coordinates. 
Tb see this we recall that parabolic coordinates y' can be taken as 

(3.1 1) z ' =  $c(y 1 +...+y"- e l - . . . - e , , - l )  

where y' < el < y' < e2 < ... < e,,-] < y" and the z j  are Cartesian coordinates 
in E,,. This coordinate system is denoted by the hox symbol 

{elle2le31' " I%'}. (3.12) 

The infinitesmal distance is given by 

Laplace's equation in E,, expressed in paraholic coordinates, has the form (3.2) 
with Qj = n:=;'(yJ - ei). Using the expression 

we seek solutions rIr( zt) of the form 

~ ( 2 )  = r ~ ~ ~ ~ ~ ~ J n ~ ~ ~ ~ ( ~ ~ ~ )  (3.13) 

where 2 < k 6 n - 1, 2 6 aj < n - 1, mj f ak. The U; must satisfy the 
corresponding Niven equations: 

N[el ,..., e,,-,;e, ,,... , e , ~ ; u l , . . . , i i n ~ ] = O .  

It is clearly possible to generalize this result to the case of coordinate systems corre- 
sponding to the diagram 

(3.14) 



5672 E G Kalnins and W Miller Jr 

A Finite solutions in cyclldic coordinates 

In the previous section we have seen how the Niven ansatz has been able to give 
polynomial solutions of Laplace's equation A* = 0. The question we answer in 
this section is whether analogous solutions exist for the case of cyclidic coordinates. 
Cyclidic coordinates are the generic orthogonal coordinates for which Laplace's equa- 
tion admits a solution via the R separation ansau [lo]. After reviewing the basic 
properties of cyclidic coordinates we'answer this question in the affirmative. 

A natural way for the realization of cyclidic coordinates is in terms of projective 
coordinates wj, j = 1 , .  . . , n + 2, given in terms of Cartesian coordinates z k  by 

that satisfy C,"_';"(W~)~ = 0. 
The surface defined by 

where e l  < e2 < e3 < ...  < entz, is a cyclide in n dimensions. Coordinates 
y = y k ,  k = 1 , .  . . ,n such that e,  < y' < e2 < y2 < . . . < yn < errtl are just 
the orthogonal cyclidic coordinates in n dimensions. This coordinate system is known 
to provide an R separation of variables for Laplace's equation. Indeed any function 
*(d,. . . , 2") can be expressed in terms of the projective coordinates by observing 
?!E? 

If * ( r l , .  . . ,z") is a solution of Laplace's equation then 

Therefore if the general projective coordinates UIJ, j = 1,. .,. , n + 2  are related to the  
coordinates y k ,  k. = 1 , .  . . , n in such a way that Cy::( U ~ J ) ~  = 0 thcn the solution 

Y ,  ", < , I - ,  J - ". , , E L  ~ " C " L 1 " "  

we now address k whether finite type solutions can be found in these coordinates? 
Tb consider this possibility, take coordinates 

I,.~..+:.ln x- '1 t2 i$2 i1  J S I ~ . . ~ \ ~ \  - n a: hplace's equatian k aka a U"lYL."l l  "I L j = l  , 

(4.3) 
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that satisfy (4.2) for y = y' and ynt2  = C;::(u,J)2. When y"t2 = 0 then (4.3) 
and (4.2) can be solved to give 

These expressions can be obtained by limiting the process y"t2 - 0 in such a way 
that ynt2ynt1 - -(E::: ek(wk)'). If we look for solutions of the form 

(4.4) 

then the corresponding Niven equations 

N[el ,  . . . , e , + z ; e , , , . . . , e , ~ ; 7 i 1  ,... , ~ i M I = O  

hold. These solutions are homogeneous polynomials of degree 2M + k = n. If, 
indeed, we take the limit specified above, then the limiting solutions of Laplace's 
equation are 

In order to obtain the explicit form of these solutions we can, without loss of 
generality, let the parameter e,,+? -CO. The resulting coordinates have the form 

and the corresponding solutions of Laplace's equation are 

where vJ = wj/p2, j = 1 , .  . . ,n  + 2. 
The general solutions of finite type can he obtained from the expression (4.4) by 

using the known limiting procedures outlined in [ t t ] .  The various possible coordinate 
types can then be characterized by the elementary divisors of the two quadratic forms. 
One example of these types is given in the following scction. 

5. Sepomtion of vnriobles in complex spaces 

The results developed for E,, and S,, can bc extendcd to the case of complexified 
spaces of constant curvature. We illustrate this for the case of .';,,c. Basically, what 
occurs in this case is the possibility that some of thc parameters ei are equal. The 
procedure for dealing with all these possibilities has been given in [II]. Here, we give 
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an example of how this works in the simplest case in which two of the parameters ei 
are equal. Much of what we have done before transfers itself directly to the complex 
case from the real case. For a metric of the form (2.2) with e,  = e*. a suitable choice 
of cwrdinates {xi) on S,, is 

E G Kalnins and W Miller Jr 

These coordinates correspond to a graph of the form 

[e:Ie;I . . . I e L I  (5.2) 

in the notation of [ll]. 

el)zII~~~(xi - e,). Solutions can be sought in the form 
The separation equations are the Same as in (2.4) but with Ri = (zi - 

where 0 < le 6 n - 1,  3 < aj  < n + 1,  U,  + al.. It follows from the equality 

that the analogue of the Niven equations is 

= 0. 1 1 
2 
- 1 k n t l  - 

4 + 2  
( V i  - e ; )  + ( 7 l i  - (i ) + , = I  "j v#i 

( 7 9  - U,.) (Ui - ej)  
j=3 

As stated above this process can be repeated and applied to any combination of 
coordinate systems for which some of the eis are equal. We should also mention 
here that similar results apply to coordinate systems in E,,,. 

Acknowledgment 

Work supported in part by the National Science Foundation under grant DMS 91- 
100324. 

References 

[l] Komam I V and Kuznelsov V B 1991 Qunnlum Eulrr-Manakov lop on the 3-sphere .Ss J mys. 
A; Moth G o r  24 L731-42 



Infegrabilify and Ihe Niven equations 5675 

[Z] Olevski P 1950 The %paration of whabb in the equation AU + Xu = 0 for space of mnstanf 

[3] NWn W D 1891 On ellipsoidal harmonics PhiL Trmr. CLXXXll 231 
[4] Hobson E W 1965 7he lheory of Spherical mtd Ellipsoid~l Harmonics (New York (helsea) 
[5] Whitlakeer E T and Watson G N 1973 A Coune of Mdeni Ana@s (Cambridge: Cambridge 

(61 Gaudin M 1983 LA fonclimi d'aidc de Berhe (Paris: Mason) 
[7l Kalnins E G and Miller W k 1986 Separation of variables an ndimensional Riemannian mmi- 

(81 Kalnins E G 1986 SepwaIhn of V0n;ablcr for Rmnarr,rirut Splvw of Con.mnl Cwamrc (pionan 

[9] Vienkin N J I968 Speciol firiicrioru m d  he lhco!y of Group Rcp~enrariotu (Traihdaliom of 

[IO] m h e r  M 1894 Die ReihenrWickckn&ni der fifenriaWicorie (Izipzig: Teubner) 
[ I l l  Kalnins E G, Miller W Jr and Reid G J 1984 Separation of variables for mmplu Riemannian 

spaas of mnslant cuwature I .  Orthogonal separable modinates for moi-dinates Snc and E,c 
' Roc. R Soc. A 394 I83 

( U m t u ~  in WO and three dimensions Marh Sboniik 27 379 

University Press) 

foldsl.The nsphere S, and Euclidean nbpace R ,  1 Moth Phys. 27 1721 

Mm:op@u mul S u ~ y s  in FWe cnd applied Mruhernarics 28) (Warlow. Uk Longman) 

Morha~tic01 Monogapfu 22) (Providence, RI: Amerimn Mathematical SocieIy) 


